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Emergence of Quintet Superfluidity in the Chain of Partially Polarized
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The system of ultracold atoms with hyperfine spin F = 3/2 might be unstable against the for-
mation of quintet pairs if the interaction is attractive in the quintet channel. We have investigated
the behavior of correlation functions in a model including only s-wave interactions at quarter filling
by large-scale density matrix renormalization group simulations. The correlations of quintet pairs
remain short-ranged even for strong attractive interaction in the paramagnetic ground state. They
become, however, quasi-long-ranged when the system is partially polarized, in a broad range around
two thirds of saturation. We also discuss possible experimental realizations and detection of quintet
pairing in the system of ultracold atoms.
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Recently ultracold atomic and molecular systems have
been in the focus of theoretical and experimental studies
not only in atomic and molecular physics but also in con-
densed matter physics [1]. This is due to the fact that
these systems provide controllable simulators of compli-
cated condensed matter systems. It is expected that they
will provide answers for a series of long-standing ques-
tions related to topics like Mott transition, BEC to BCS
crossover, non-Fermi liquid behavior of high-Tc supercon-
ductors, or anomalous quantum Hall effect. Moreover,
atomic systems with hyperfine spin degrees of freedom
higher than 1/2 can show completely new behavior for
both bosonic and fermionic systems. For repulsive inter-
action various Mott insulating phases, (chiral) spin liquid
states, resonating plaquette order, spin-quadrupole and
even higher multipole order [2] can occur in two- or three-
dimensional systems, while in one dimension a general-
ized Peierls-like distortion can characterize the ground
state with oscillating bond-order parameter [3]. For at-
tractive interactions bound trionic and quartet states
have been predicted for one- and three-dimensional sys-
tems as well [4].

In addition to the usual singlet BCS pairs, nonsinglet
pairs can also occur in principle if the appropriate com-
ponent of the interaction is attractive. Due to symmetry
reasons, spin-triplet pairs of spin-1/2 electrons can exist
only in p-wave – or more generally in odd-l-wave – su-
perconductors, while s-wave pairs of higher spin fermions
can also be in a nonsinglet spin state, e.g., F = 3/2
fermions may form spin-2 (quintet) pairs. These states
are of particular interest for their exotic properties espe-
cially in magnetic field [5].

For a long time magnetic ordering and superconduc-
tivity were thought to be incompatible. In fact homoge-
neous ferromagnetic order does not allow a homogeneous

superconducting order of singlet Cooper pairs. Coexis-
tence is possible for p-wave triplet pairs [6] or in inhomo-
geneous singlet superconductivity with finite momentum
of the pairs, i.e., in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase [7].

In this Letter, we study the possible formation of lo-
cal quintet pairs and their stability in a one-dimensional
chain of fermionic atoms with hyperfine spin F = 3/2,
when the interaction is attractive in the quintet channel.
We consider a quarter-filled system, namely, the number
of particles is equal to the number of sites. We show
that although correlation functions of quintet pairs de-
cay exponentially in the paramagnetic ground state, the
quintet pairs can be stabilized by a strong enough ex-
ternal magnetic field due to population imbalance of the
particles with different spin components. The correlation
of quintet pairs shows algebraic decay and quintet pair-
ing becomes the dominant instability in the system. This
can occur in a wide range of the magnetic field. The main
advantage of the presented model is that it contains only
s-wave interaction and the emergence of quintet pairing
does not require p-wave Feschbach resonance, thus ex-
perimental realization of non-singlet pairs becomes much
easier.

The scattering processes between the scattering parti-
cles with hyperfine spin F can be classified into indepen-
dent spin channels characterized by the total spin (S)

of the two scattered atoms: V =
∑2F

S=0 gSPS , where
PS projects onto the total spin S subspace and gS is
the coupling constant in the corresponding channel. The
gS is related to the aS s-wave scattering length in the

total spin S scattering channel as gS = 4π~2aS

ν with
ν atomic mass. The projectors are expressed via the
pairing operators as PS =

∑

m,i P
†
Sm,iPSm,i which are

defined through the Clebsch-Gordan coefficients [9] and
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the c†α,i spin-α fermion creation operator as P †
Sm,i =

∑

α,β

〈

3
2
, 3
2
;α, β|S,m

〉

c†α,ic
†
β,i, where m is the z compo-

nent of the total spin of the two scattering particles.
Starting from a fermionic spin-3/2 Hubbard-like model
with on-site interaction, the only contributing terms are
antisymmetric under the exchange of the spin of the two
colliding atoms, therefore, only the S = 0 and S = 2
terms may appear. Thus the Hamiltonian of the system
reads as

H = −t
∑

i,α

(

c†α,icα,i+1 +H.c.
)

+ g0P0 + g2P2, (1)

where t measures the overlap between neighboring sites.
For attractive couplings (g0 < 0, g2 < 0) the above
Hamiltonian suggests that singlet and quintet pairs are
competing. The region with repulsive interaction in the
singlet channel (g0 > 0) turned out to be more relevant
for quintet pairing. We will therefore consider the case
g0 > 0, g2 < 0, where quintet pairing competes with den-
sity waves, as seen if the Hamiltonian (1) is rewritten in

terms of the density, ni =
∑

α nα,i =
∑

α c†α,icα,i, and
the P2 quintet projector as

H = −t
∑

i,α

(

c†α,icα,i+1 +H.c.
)

+
U

2

∑

i

n2
i + V P2, (2)

with couplings U = 2g0, V = g2 − g0.
First we have studied the stability of quintet pairs in

the simplest way, i.e., within a self-consistent mean-field
approximation. Due to the competing terms in Hamil-
tonian (2) we supposed site-centered quintet pairs and
atomic density wave characterized by the pairing or-
der parameters

〈

P †
2m,i

〉

(m = −2, . . . , 2) and 〈ni〉, re-
spectively. Since the atoms have four different inter-
nal states in spin-3/2 systems, it is natural to assume
a maximum four-fold periodicity at quarter filling. Ac-
cordingly we considered a 4-sublattice ansatz to solve the
self-consistent mean-field equations and to determine the
mean-field phase diagram. Two different stable phases
are found in the quadrant g0 > 0, g2 < 0 separated
by a line lying around g2 = −1 (in units of the hop-
ping parameter t). For weak attractive quintet couplings
(−1 < g2 < 0) the system is in the Mott phase: 〈ni〉 = 2
on odd sites and 〈ni〉 = 0 on even sites, or vice versa. For
stronger attractive quintet couplings the atomic density
oscillates in the same way as in the other phase, however,
in addition to that the quintet pairing order parameter
〈

P †
20,i

〉

becomes finite, i.e., local quintet pairs with m = 0
are formed on every other site.
This mean-field phase diagram turns out to be incor-

rect for one-dimensional systems. Analytic calculation
in the weak-coupling limit [10] shows that the leading in-
stability for g0 > 0, g2 < 0 is the formation of site- or
bond-centered quartets. In order to search for possible
conditions that might stabilize the quintet Cooper-pairs
in one dimension we have studied numerically the phase

diagram of model (1) for g2 ≤ 0 at quarter filling us-
ing the density matrix renormalization group (DMRG)
method [8]. The simulations have been performed with
open boundary condition up to L = 64 sites, keeping
500− 1000 block states and using up to 8 sweeps. Prop-
erties of the various phases have been determined by an-
alyzing the decay of several correlation functions, like
different pairings, quarteting, density and spin correla-
tion functions, respectively: χSm(i) = 〈P †

Sm,1PSm,1+i〉,

with m = 0, ±1, ±2, χQ(i) = 〈Q†
1Q1+i〉, χn(i) =

〈n1n1+i〉− 〈n1〉〈n1+i〉, χm̃(i) = 〈m̃1m̃1+i〉− 〈m̃1〉〈m̃1+i〉,
where m̃i =

∑

α αnα,i and the operator to study quar-

teting is Q†
i = c†

3/2,ic
†

1/2,ic
†

−1/2,ic
†

−3/2,i. The analysis of

the above defined correlation functions confirmed the ab-
sence of quintet Cooper pairs in 1D system in the absence
of magnetic field, since the quintet pairing correlations
(χ2m) decay exponentially for all m in the whole quad-
rant g0 > 0, g2 < 0. We have found, in agreement with
Ref. [10], that χQ and χn show algebraic decay in the
regime where site-centered quartet phase was predicted
by weak coupling analysis.

The spin singlet quartets which are formed from an
equal number of atoms with spin components: α =
3/2, 1/2,−1/2 and −3/2 could be broken and quintet
pairs could be stabilized, if a population imbalance oc-
curs in the number of fermions with different spin com-
ponents. This can be achieved, for example, by switch-
ing on a magnetic field (B) which couples linearly to the
magnetization m̃ = 1

L

∑

i〈m̃i〉 measured in units of Bohr
magneton. Therefore, we have calculated the correlation
functions for increasing magnetization from m̃ = 0 up to
the maximum value m̃ = 3/2.

Before presenting the results, it is interesting to see
how the number of atoms with spin components α =
−3/2,−1/2, and 1/2 decreases in increasing field while
more and more atoms have α = 3/2. This depends on
the interaction between the particles. Performing calcu-
lations at several points in the (g0 > 0,g2 < 0) quadrant
we have found two types of dependence of 〈nα,i〉 on m̃ as
displayed in Fig. 1. The regions, where one or the other
behavior is realized, correspond roughly to the regions,
where the site-centered or the bond-centered phase is the
m̃ = 0 ground state [10]. The pictograms at m̃ = 0 in
Fig. 1 indicate these states. The transition between the
two types of behaviors occurs roughly around g0 = −3g2.

For m̃ ≥ 1 the model becomes independent of g0 due to
the absence of fermions with α = −3/2 and −1/2 in both
regions. The quintet correlation function χ22 shows an
algebraic decay as shown in Fig. 2, while all other χ2m are
zero. The Fourier spectrum of χ22 has a peak at π, which
indicates two-site periodicity of the quintet correlations,
although, the particle density remains homogeneous in
agreement with the expectations in one dimension. This
spatial correlation is illustrated by the pictograms in
Fig. 1: local quintet pairs of atoms with α = 3/2 and 1/2
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FIG. 1. (Color online) Density of the fermions with different
spin component vs. magnetization m̃ for a chain with L = 64
sites (a) at g0 = 2, g2 = −4, and (b) at g0 = 20, g2 =
−4. The pictograms illustrate the spatial structure of the
quarteting, pairing quintet and ferromagnetic phases (see the
text for the details). Shading of the circles corresponds to
the different α hyperfine spin components of the atoms, and
the lines connecting the atoms indicate that the atoms form
pairs and quartets with finite anomalous expectation values:
〈

c†αc
†
β

〉

and
〈

c†αc
†
βc

†
γc

†
δ

〉

, respectively.
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FIG. 2. (Color online) Decay of the quintet correlation func-
tions χ2m for m̃ = 0, m̃ = 13/16, m̃ = 1 and m̃ = 5/4,
calculated for g0 = 2, g2 = −4. For the length of the chain
L = 64.

can be formed at quarter filling only on every other site.
In addition, χn and χm̃ decay algebraically with the same
periodicity as χ22, but χn(i) = χm̃(i) = (−1)iχ22(i). As
the imbalance of the two remaining spin components is
increased, and the weight of the α = 1/2 spin component
decreases, the m = 2 quintet pairs start to dissolve and
a ferromagnetic background appears. Nevertheless, the
quintet pairing (χ22) is the most slowly decaying correla-
tion function for a broad region of m̃ (see Fig 2), although
its periodicity becomes incommensurate with the lattice,

and the leading Fourier component of χ22 shifts from π
towards 0. The system becomes ferromagnetically or-
dered at m̃ = 3/2, and the Fourier spectrum has a single
peak at q = 0. This behavior is in complete agreement
with the results of Batrouni et al. [11], since our model
can be mapped exactly to their model when m̃ ≥ 1. This
FFLO phase has also been studied in two component,
spin polarized systems both theoretically [12] and exper-
imentally [13].

In contrast to this, the population imbalance of
fermions with different spin components shows markedly
different character in the two regions for m̃ < 1. For
g0 < −3g2 (Fig. 1a) all spin components start to gain
finite weight for m̃ < 1. As a consequence, the density of
the spin quintet pairs starts to decrease, but χ22 remains
the slowest decaying correlation function in the system
at least when m̃ > 3/4. Although, it is difficult to distin-
guish between an exponential or algebraic decay of the
correlation functions below m̃ ≈ 3/4, the quintet pair-
ing is still the dominant instability even slightly below
m̃ = 3/4. Due to the emergence of the paramagneti-
cally favoured spin-singlet quartets, the leading Fourier
component of χ22 shifts towards π/2. Even though all
spin components have finite weight, the other correlation
functions χ2m with m = 0, ±1, and −2 decays exponen-
tially (Fig. 2) for m̃ < 1.

A different behavior is found for g0 > −3g2 (Fig. 1b).
As the polarization decreases from m̃ = 1 to 3/4, the den-
sity of atoms with −3/2 spin component remains zero,
half of the atoms have α = 3/2, while the density of
atoms with α = ±1/2 varies linearly with m̃ becoming
equal at m̃ = 3/4. In the whole range χ2,−2 and χ2,−1

are equal to zero due to the missing α = −3/2 spin com-
ponent and χ20 decays exponentially. On the other hand,
the slowest decaying correlation functions, χ21 and χ22

show algebraic decay with identical exponent as shown
in Fig. 3. As

〈

n−1/2

〉

is increasing, the density of the
m = 1 pairs also increases and the number of the m = 2
pairs decreases. The amplitude of χ21 increases accord-
ingly and the leading Fourier-component of the χ22 and
χ21 correlation functions shifts from π toward π/2. This
spatial correlation can be illustrated as if quintet pairs of
α = 3/2 and α = 1/2 atoms were alternating with quintet
pairs of α = 3/2 and α = −1/2 atoms as shown in Fig. 1b.
Therefore, the one-component quintet pairing found for
m̃ ≥ 1 is replaced by a two-component quintet pairing for
m̃ < 1. We have found that the m = 1 andm = 2 quintet
pairing remain the dominant instability also for m̃ < 3/4
at least for strong enough imbalance. For smaller val-
ues of m̃ all χ2m decay exponentially (Fig. 2) due to the
emergence of the paramagnetically favoured spin-singlet
quartets and the leading Fourier component of χ2m re-
mains at π/2.

Spin-3/2 fermionic condensation could be realized ex-
perimentally not only in 3D but in 1D, too, using 132Cs,
9Be, 135Ba, 137Ba [1]. Since according to the results
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FIG. 3. (Color online) Decay of the quintet correlation func-
tion χ2m for m̃ = 0, 3/4 and 1 calculated at g0 = 20, g2 = −4.

presented above quintet pairs exists in a wide range of
magnetization for attractive quintet interaction, the ex-
perimental realization of the quintet superfluid does not
require fine tuning in the (g0, g2, m̃) parameter space.
In addition, the presented quintet pairing phases can be
stabilized via s-wave Feschbach resonance avoiding the
difficulties with inelastic loss of p-wave scatterings. To
detect the m = 1 and m = 2 quintet pairs, it is cru-
cial to probe the pairing and to measure the underlying
magnetic order. There are several possibilities to probe
these many-body correlation effects, for instance, pair-
ing can be probed by time-of-flight absorption image [15]
or the pair gap can be studied by radio-frequency spec-
troscopy [16] or momentum-resolved Bragg-spectroscopy
[17]. In addition, magnetic excitations can also be
observed by quantum-noise spectroscopy [18]. Elastic
Bragg-spectroscopy [19] can also be applied to detect the
variation of the periodicity of the quintet pairs.

In this work, we have investigated the competition be-
tween density wave and pair formation in the system of
F = 3/2 cold atoms in one-dimensional optical traps
at quarter filling. The behavior of various correlation
functions has been studied via large-scale, high precision
DMRG simulations. We have found that external mag-
netic field can stabilize different quintet pair states when
the spin-population imbalance of fermions breaks up the
singlet quartets. While we have found an FFLO-like state
of m = 2 quintet pairs for large population imbalance,
two-component superfluidity with bothm = 2 andm = 1
pairs characterizes the system for intermediate values of
the magnetization. Since our model contains only s-wave
interaction, this result opens a new possibility for the ex-
perimental realization and detection of nonsinglet pairing
with ultracold atomic systems. We also suggest that in
higher dimensional systems, where a mean-field solution
might be more reliable, and quintet pairs may exist even
in the paramagnetic case, external field can further sta-
bilize them.
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