Ultracold lattice gases with periodically modulated interactions

Ákos Rapp, Xiaolong Deng, and Luis Santos

Institut für Theoretische Physik, Leibniz Universität Hannover

Exotic Quantum Phases Group Seminar
Budapest, 2013/05/27
Outline

1. Ultracold atoms in optical lattices
2. Periodic modulations
3. Effective Floquet Hamiltonian
4. Real-time dynamics
5. Summary
Ultracold atoms in optical lattices

Optical lattices

- standing wave from non-resonant laser effective periodic potential
 \[V(x) = V_L \sin^2 k_L x \]
- deep optical lattices nearest-neighbor hopping \(J = J(V_L) \)
Ultracold atoms in optical lattices

Optical lattices

- standing wave from non-resonant laser effective periodic potential
 \[V(x) = V_L \sin^2 k_L x \]
- deep optical lattices nearest-neighbor hopping \(J = J(V_L) \)

Interactions

- relevant parameter: scattering length \(a_s \)
- changing \(a_s \): by Feshbach resonances
 Chin et al. Rev. Mod. Phys. 82, 1225 (2010)
- optical lattices: local interactions \(U \sim a_s \) → Hubbard models
Hubbard models for ...

(strongly) correlated solid state systems
- presence of impurities, phonons, etc...
- microscopic parameters are not easy to tune and to determine
- fast (electronic) time scales
Ultracold atoms in optical lattices

Hubbard models for ...

(strongly) correlated solid state systems

- presence of impurities, phonons, etc...
- microscopic parameters are not easy to tune and to determine
- fast (electronic) time scales

Hubbard models for ...

ultracold atoms in optical lattices

- "prefect crystal"
- excellent control of microscopic parameters
- relatively long time scales tracking systems in real time

⇒ out-of-equilibrium

- quantum quenches
- lattice shaking
- ...

Á. Rapp: Periodically modulated interactions
Optical lattices – with **shaking**
Optical lattices – with shaking

Lattice shaking \rightarrow Floquet analysis \rightarrow rescaled hopping

$$J \rightarrow J_{\text{eff}} = J J_0 \left(\frac{k_1}{\omega} \right)$$

Eckart et al., PRL 95, 260404 (2005), Lignier et al., PRL 99, 220403 (2007), Zenesini et al., PRL 102, 100403 (2009), ...
Application of lattice shaking:

Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices

Struck et al., Science 333, 996 (2011)
Interactions – with periodic modulation in time
Interactions – with periodic modulation in time

Modulation of the $B \rightarrow a_s$ modulation of a_s

- excite quadrupole mode in a harmonic trap (experiment)
 Pollack et al., PRA 81, 053627 (2010)
- bosons in a double-well potential (theory)
 Gong et al., PRL 103, 133002 (2009)
Interactions – with periodic modulation in time

Modulation of the $B \rightarrow$ modulation of a_s

- Excite quadrupole mode in a harmonic trap (experiment)
 Pollack et al., PRA 81, 053627 (2010)

- Bosons in a double-well potential (theory)
 Gong et al., PRL 103, 133002 (2009)

Here:
- Effective theory & phase diagram for the lattice
- Real-time dynamics & experimental signature
Periodically modulated interactions

- time-dependent Bose-Hubbard Hamiltonian with $U \rightarrow U(t) \approx U_0 + U_1 \cos(\omega t)$

$$H(t) = -J \sum_{\langle ij \rangle} b_i^{\dagger} b_j + \frac{U(t)}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$
Periodically modulated interactions

- Time-dependent Bose-Hubbard Hamiltonian with \(U \rightarrow U(t) \approx U_0 + U_1 \cos(\omega t) \)

\[
H(t) = -J \sum_{\langle ij \rangle} b_i^+ b_j + \frac{U(t)}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)
\]

- Floquet analysis
 1. take \(H_0(t) = U(t) \times \ldots \) and \(H_1 = H(t) - H_0(t) \)
 2. solve time-dependent Schrödinger equation \textit{analytically}

\[
[i\hbar \partial_t - H_0(t)] |\psi_0(t)\rangle = \epsilon |\psi_0(t)\rangle
\]

- Transform to the "interaction picture" with Floquet evolution operator

\[
\mathcal{U}(t) = e^{-i \int_0^t dt' H_0(t')/\hbar}
\]

- Derive effective \textit{time-independent} Hamiltonian by time averaging

\[
H_{\text{eff}} = \frac{1}{T} \int_0^T dt \mathcal{U}^+(t) H_1 \mathcal{U}(t)
\]
Periodically modulated interactions

- time-dependent Bose-Hubbard Hamiltonian with $U \rightarrow U(t) \approx U_0 + U_1 \cos(\omega t)$

$$H(t) = -J \sum_{\langle ij \rangle} b_i^+ b_j + \frac{U(t)}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

- Floquet analysis \rightarrow effective time-independent Hamiltonian for $J, U_0 \ll \hbar \omega$

$$H_{\text{eff}} = -J \sum_{\langle ij \rangle} b_i^+ J_0 \left(\frac{U_1}{\hbar \omega} (\hat{n}_i - \hat{n}_j) \right) b_j + \frac{U_0}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

Á. Rapp: Periodically modulated interactions

Budapest
Periodically modulated interactions

- time-dependent Bose-Hubbard Hamiltonian with $U \rightarrow U(t) \approx U_0 + U_1 \cos(\omega t)$

$$H(t) = -J \sum_{\langle ij \rangle} b_i^+ b_j + \frac{U(t)}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

- Floquet analysis \rightarrow effective time-independent Hamiltonian for $J, U_0 \ll \hbar \omega$

$$H_{\text{eff}} = -J \sum_{\langle ij \rangle} b_i^+ J_0 \left(\frac{U_1}{\hbar \omega} (\hat{n}_i - \hat{n}_j) \right) b_j + \frac{U_0}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

- main difference w.r.t. lattice shaking: non-linearity in occupation differences

- most interesting regime:

$$U_1 \gtrsim \hbar \omega$$
$U_1/\hbar\omega = 4 \rightarrow J_0(U_1/\hbar\omega) < 0$

Gutzwiller ansatz

DMRG

MI Mott insulator (not really affected)

SF “usual” superfluid

\[\frac{|\langle \hat{b} \rangle|}{\sqrt{n}} > \frac{|\langle \hat{b}^2 \rangle|}{n} \]

PSF pair superfluid

\[\frac{|\langle \hat{b} \rangle|}{\sqrt{n}} \leq \frac{|\langle \hat{b}^2 \rangle|}{n} \]
Effective Hamiltonian – phase diagram

\[\frac{U_1}{\hbar \omega} \approx 2.4 \rightarrow J_0(\frac{U_1}{\hbar \omega}) \approx 0 \]

- **MI**: no defects even in \(d = 1! \)
- **holon/doublon SF**: holes and doublons do not mix!
We have analyzed so far the effective system. But what happens in the real system?
We have analyzed so far the effective system. But what happens in the real system?

Gutzwiller Ansatz

- wave function ansatz: \(|G(t)\rangle = \prod_j |f_m(j, t)|m\rangle \)
- time-dependent variational principle: \(\langle G(t)|i\hbar \partial_t - H(t)|G(t)\rangle \to \text{min} \)
- dynamical system:

\[
i\hbar \partial_t f_m(j, t) = \left[U(t) \frac{m(m-1)}{2} + (V(r_j, t) - \mu_0)m \right] f_m(j, t)
- J(t)\Phi^*(j, t)\sqrt{m+1} f_{m+1}(j, t) - J(t)\Phi(j, t)\sqrt{m} f_{m-1}(j, t)
\]

- mean-field \(\Phi(j, t) = \sum_{\delta} \langle G|\hat{b}_{j+\delta}|G\rangle \)
- microscopic parameters \(U, J, \) and \(V \) can change as a function of time \(t \)
- provide initial condition \(f_m(j, t = 0) \) also from GA
Real-time dynamics

Possible experimental procedure

1. start with $B_1 = 0$ and ramp up adiabatically

2. careful with energy scales!

\[J, U_0 \ll \hbar \omega \lesssim U_1 \ll \text{band gap} \]

- small E_R (large M, large λ_L)
- zero crossing near wide resonance

![Feshbach resonances in 133Cs](image)

resonance data from Manfred Mark, private comm.
Real-time dynamics

Possible experimental procedure

1. Start with $B_1 = 0$ and ramp up adiabatically.
2. Be careful with energy scales!

- $J, U_0 \ll \hbar \omega \lesssim U_1 \ll$ band gap
- Small E_R (large M, large λ_L)
- Zero crossing near wide resonance

Resonance data from Manfred Mark, private comm.

Here:

- 3D cubic lattice with $N_{\text{tot}} \approx 43 \times 10^3$ 133Cs atoms
- Lattice depth $V_L/E_R = 20 \rightarrow$ hopping rate $J/E_R \approx 0.002491$
- Final magnetic field: $B(t) = B_0 + B_1 \cos(\omega t)$,

$$\omega = 2\pi \times 1 \text{ kHz}, B_0 = 17.23 \text{ G}, B_1 = 1.14 \text{ G} \rightarrow \frac{U_1}{\hbar \omega} \approx 2.4, J_0 \left(\frac{U_1}{\hbar \omega} \right) \approx 0$$
Real-time dynamics

What should we look for? Abrupt drops in *in-situ* density profile

$t=0.0 \text{ ms (} \omega = 2\pi \times 1 \text{ kHz)}$

![Graph showing n(r) and d(r) profiles over time](image)
Real-time dynamics

What should we look for? Abrupt drops in *in-situ* density profile

![Graph showing density profile over time](image)

- $t = 90.0 \text{ ms}$ ($\omega = 2\pi \times 1 \text{ kHz}$)

Legend:
- $n(r)$
- $d(r)$
Real-time dynamics

What should we look for? Abrupt drops in *in-situ* density profile

t=150.0 ms (ω = 2π × 1 kHz)

![Graph showing n(r) and d(r) over time](image)
Real-time dynamics

What should we look for? Abrupt drops in *in-situ* density profile

![Graph showing in-situ density profile](image)

$t=200.0$ ms ($\omega = 2\pi \times 1$ kHz)
Real-time dynamics

What should we look for? Abrupt drops in *in-situ* density profile

3D cloud → *in situ* images show the *columnar* atom density
Summary

- periodic modulation of interactions
 PRL 109, 203005 (2012)
 – new experimental KNOB?

- main issue: HEATING
 → need for real-time simulations

Thank you for the attention!